

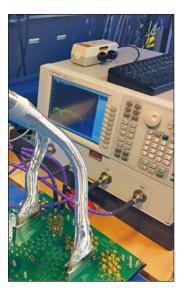
Complete Electronic Solutions

AirBorn is an employee owned company whose core business is engineering & manufacturing specialized connectors & electronic components for OEMs worldwide. We serve customers across many industries including: Commercial Air, Industrial, Medical, Military/Defense, & Space Exploration.

Companies today are looking for more than a supplier, they're looking for a strategic partner to collaborate 8 grow with. AirBorn products are trusted to perform in extreme conditions, where mission-critical reliability is vital to success. Customers trust AirBorn products, and have for over 60 years.

AirBorn Engineering = Problem Solved®

AirBorn's engineering group specializes in new product design and development for OEMs across the globe. Our team of 50+ degreed engineers are the most innovative and committed to solving our customer's challenges, but that's only the beginning of where we can help! Leverage our design and manufacturing expertise throughout the entire product development process. From conceptual design, prototyping, pilotruns through to mass production, our teams work efficiently to cut down your program's time to market.


Solution Engineering

AirBorn has a dedicated team of experienced and degreed solution engineers on staff to help solve your most pressing electronic challenges.

Cable vs. Flex Assemblies

We manufacture cable and flex assemblies and can provide an impartial recommendation of which solution is best for your distinct application.

Signal Integrity Expertise

Whether a new design retrofit, or a field issue, let us help you design an end-to-end interconnect solution to support your high-speed signal integrity design.

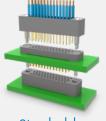
Lab & Test Services

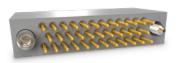
We'll test against the highest standards imaginable to ensure your products stand up to the rigors of space, military, commercial air, and industrial applications.

Connectors

Micro D M Series

Hybrid-Keyed Micro D microQUAD


High-Speed Micro D microSI


Nano D N Series

Rectangular 25Gbps verSI

Stackable RC & RCII Series

Rectangular R Series

Rectangular W Series

Z Axis Interposer Z Series

Circular Series 360

Strip Connector AirStrip

Macro D RocKet

Assemblies

Flexible Circuit Assemblies

Cable Assemblies

FUZE Assemblies

Active Optical Assemblies

Embedded Systems

Rugged Power Systems

Photonics/Optoelectronics

AirBorn Solutions Are "In-Action" Inside Many Important & Famous Applications

AirBorn Connectors, Inc. was founded in 1958 to manufacture electronic connectors for aviation applications, hence our company name. By 1960, our 12 employees engaged with customers including Motorola Inc., Texas Instruments (now Raytheon), Lockheed Aircraft, Boeing and Burroughs. In the time since our founding, we've managed to be a part of many famous and important projects in human history. The Voyager I & II program, launched in 1977 and still traveling interstellar space today, is emblematic of how customers view AirBorn parts: rugged, reliable and long lasting.

We're proud to be a part of America's, and our allies', vast military and defense initiatives too. AirBorn parts were designed into the Apache & Blackhawk Helicopters, F-16 & F-35 Jets, Abram's & Bradley Tanks and Ohio-Class Attack Subs just to name a few. Our solutions are also part of Patriot, Javelin, Hellfire, Tomahawk and THAAD missile programs. We excel at providing unfailing quality to mission-critical applications.

While military/defense and aviation applications are our specialty, we by no means stop there. AirBorn parts are an integral part of commercial aircraft, MRI machines, defibrillators as well as pain management systems. From deep sea to deep space, AirBorn connectors are ready for any challenge.

Mars Rovers

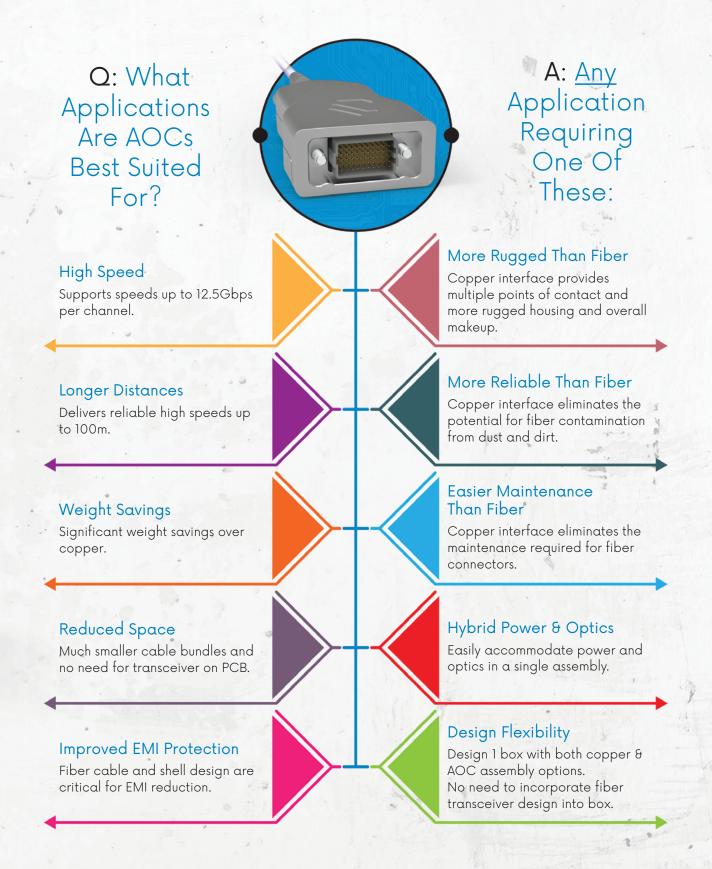
Commercial Airliners

Military Communications & Rifle Scopes

Pain Management Systems

FOCS Active Optical Cables Overview

Revolutionary Data Communications


The FOCuS Active Optical Cable product line is designed to meet the requirements for high-speed/signal integrity applications while delivering the quality and reliability customers have come to expect from AirBorn.

FOCuS affords design flexibility by offering vertical board-mount, right angle board-mount, AOC cable I/O, and Copper Cable I/O. The copper and AOC cables have the exact same pin-out to offer the flexibility of using either a copper cable for shorter lengths and easily changed to an Active Optic cable as needed.

Key Features & Benefits:

- Patented design
- Distances up to 100 meters
- Data rates of 12.5 Gbps/channel
- 4 Channels
- Rugged, light-weight and low-profile cable

- EMI immune
- No fiber cleaning concerns
- Fast installation: mate θ go
- No transceiver needed
- Evaluation kit available (see page 37)

The Time Is NOW: Active Optical Connectors & Assemblies

We engineered these fiber cable assemblies with Space, Military, Industrial, and Commercial Aviation applications in mind — but their practical uses extend into many industries. When you need dependability as well as performance, AirBorn's FOCuS AOCs are the answer for your toughest applications.

Critical to Success Applications

Ingenuity, Toughness, & Quality: Keys To Surviving Harsh Environments

Our FOCuS® active optical cable technology now embodies a fully-qualified, Space-Rated Active Optical Cable (SAOC®) and a Rugged Active Optical Cable (RAOC®). Built on our proven, high-speed verSI connector platform, both versions exemplify all the benefits of fiber with the ease & reliability of copper with a design that operates 4 channels at 12.5 Gbps per channel (50 Gbps aggregate).

The SAOC® is radiation-hardened and non-outgassing components are used throughout the assembly to assure complete reliability. Optimizing size and weight factors in the design, we made certain the SAOC® is ideal for spaceflight and the extreme conditions that come to bear during a launch.

Features such as multiple points-of-contact, optimal material tensile strength, and metal backshells ensure that RAOC® is tested for complete reliability when the ride is rough in industrial and mil/aero applications.

Applications

- Satellite Systems
- Launch Vehicles
- Missile Systems
- High-Speed Rail

- Commercial Aircraft
- **Avionics**

FOCuS AOCs Are Designed Into:

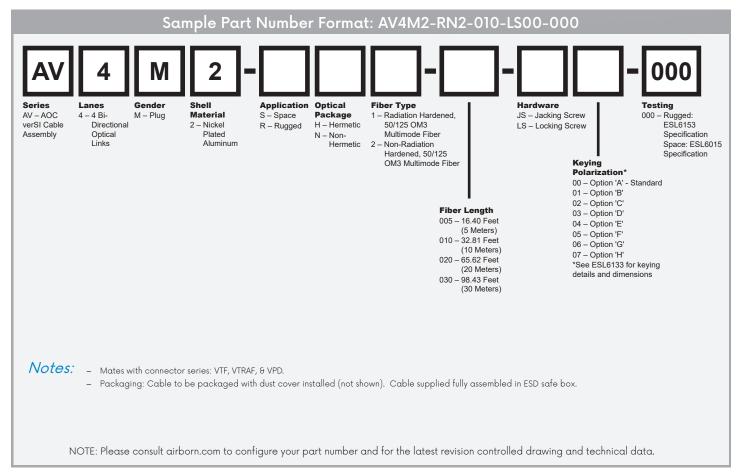
Avionics

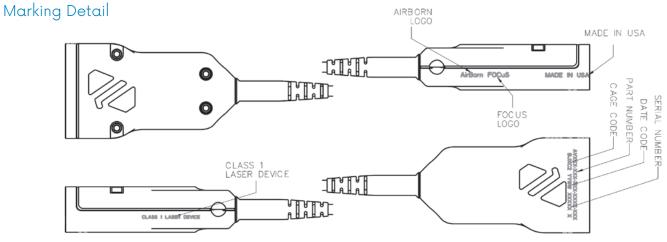
Helicopters

And More...

Satellites

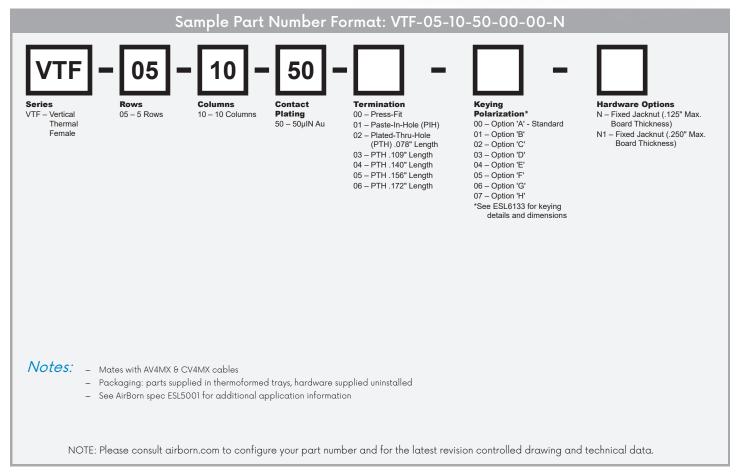
Launch Vehicles


Missiles

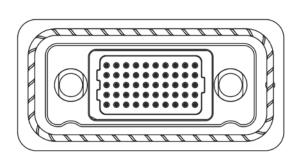

AV4M2 — Active Optical Cable Assembly

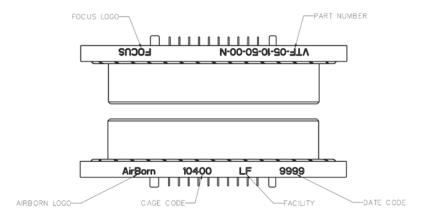
AirBorn's FOCuS Active Optical Cable is a 4 channel, 12.5 Gbps offering, available in both space-rated and rugged models. AV4M2 cables mate to the VTF and VTRAF board-mount connectors and VPD panel-mount cables.

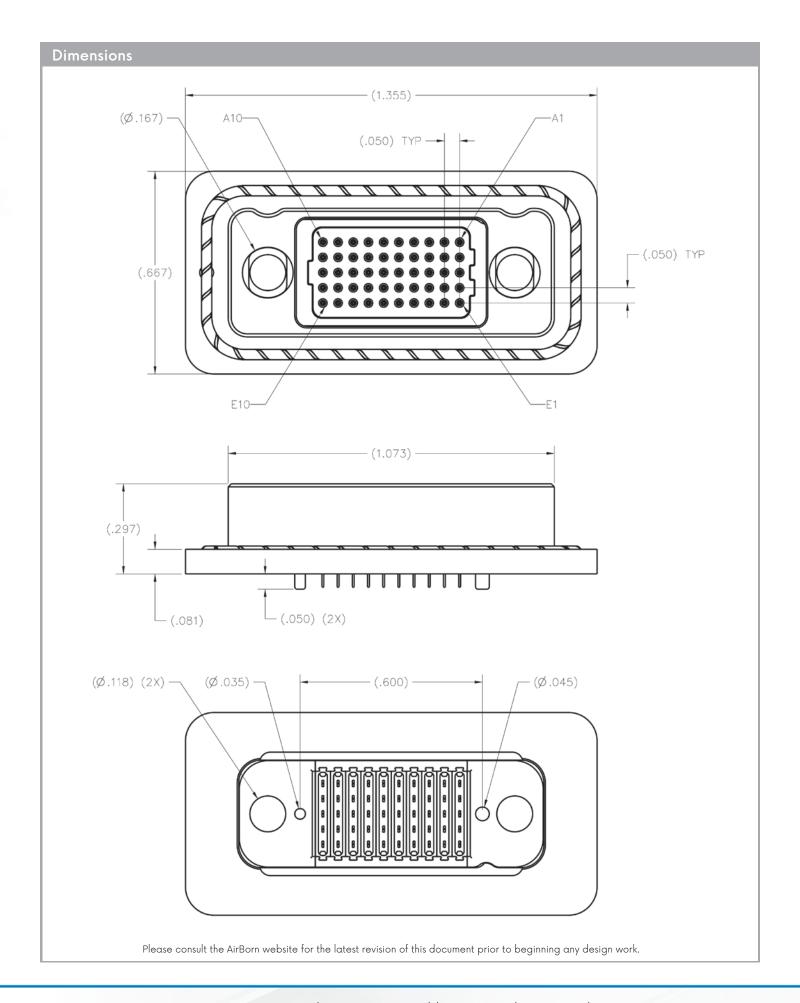
This is a Class I laser product compliant with 21CFR1040.10.



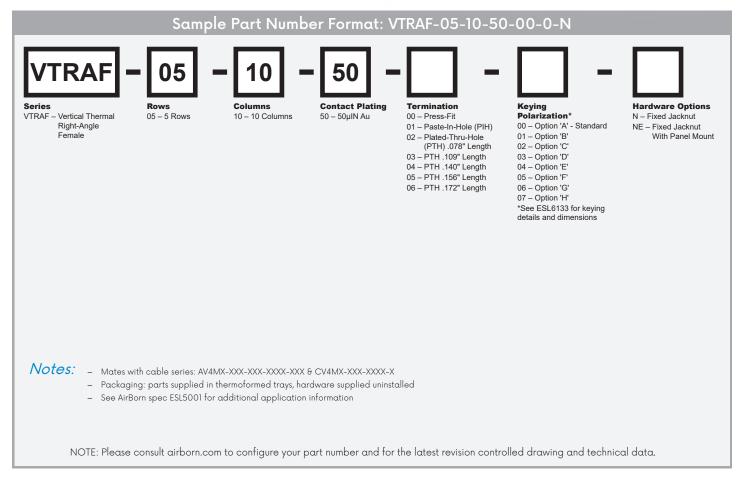
(1.325) — --(.636)--(R.094) (4X)-(3.673)(.050) TYP (.050) TYP Please consult the AirBorn website for the latest revision of this document prior to beginning any design work. CLASS I Laser Product compliant with 21CFR1040.10

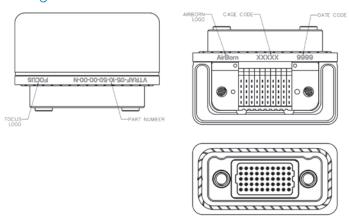

VTF — Vertical Board-Mount Connector

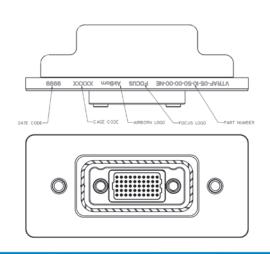

VTF models are thermal interface connectors designed to mate with AV4M2 active optical cables and CV4M2 copper cables. VTF connectors are offered with multiple termination options including press-fit, paste-in-hole, and plated-thru-hole. EMI gaskets are standard with this model connector.

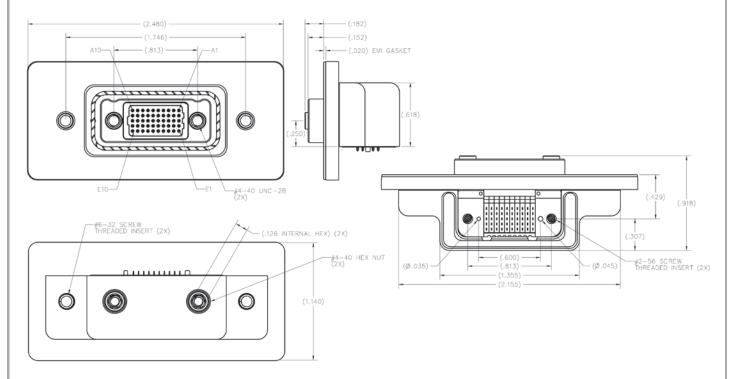


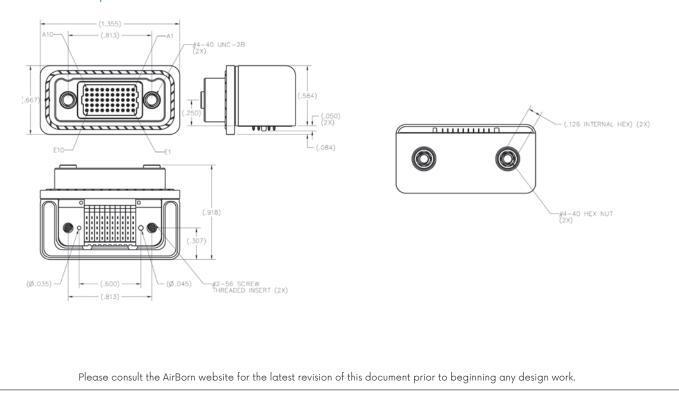
Marking Detail




VTRAF — Right-Angle, Board-Mount Connector

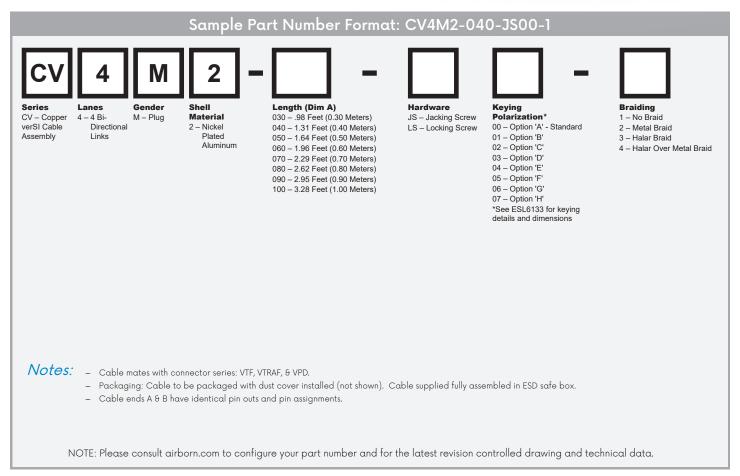

VTRAF models are thermal interface connectors designed to mate with AV4M2 active optic cables and CV4M2 copper cables. VTRAF connectors are offered with multiple termination options including press-fit, paste-in-hole and plated-thru-hole options. EMI gaskets are standard with this model connector.

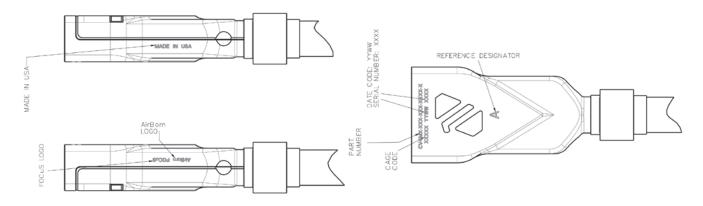

Marking Detail

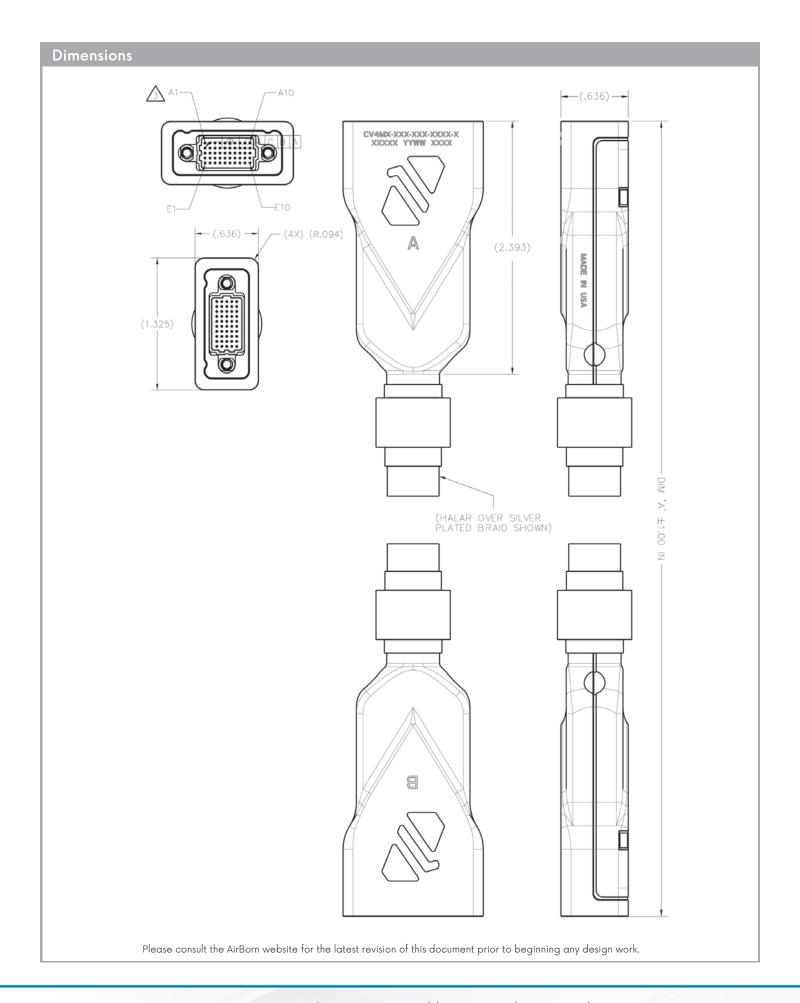


Dimensions

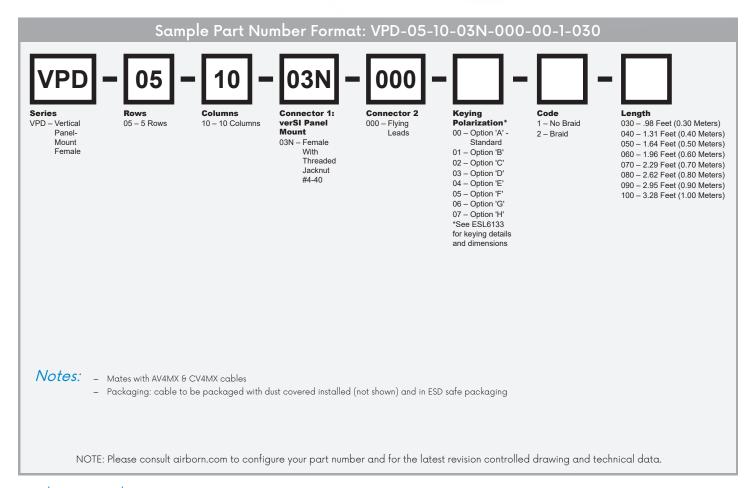
Panel Mount Option

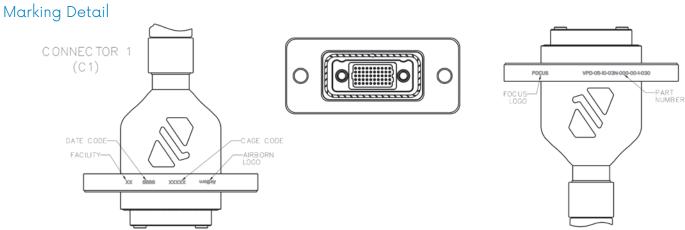

Board Mount Option

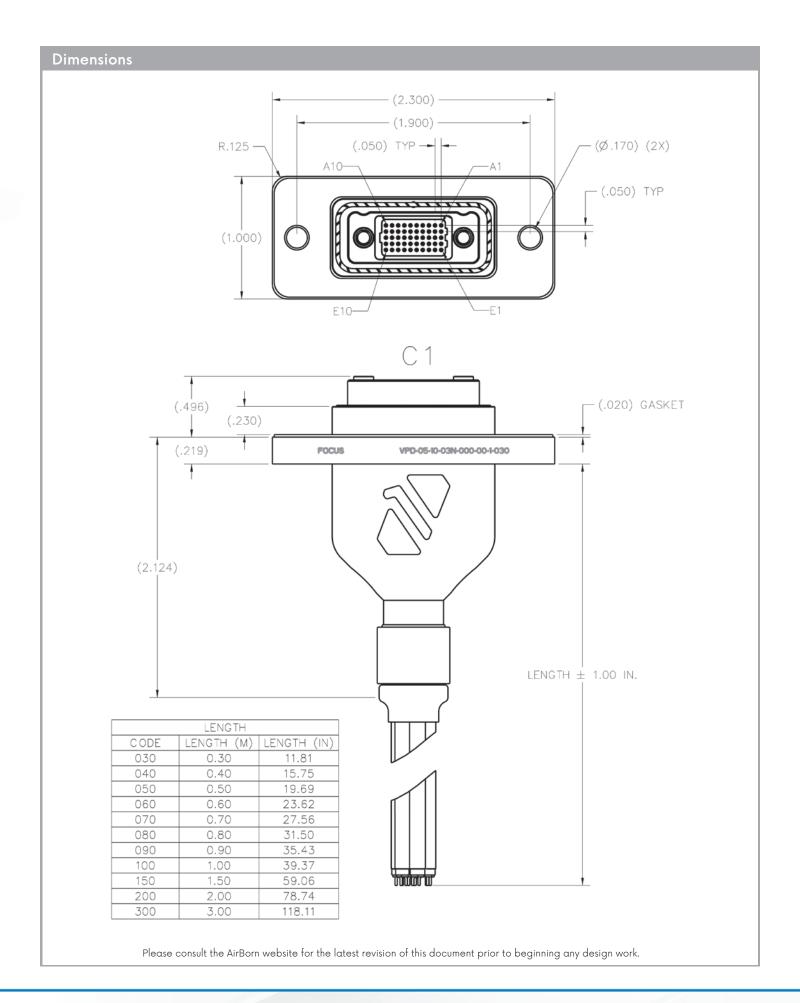

CV4M2 — Copper Cable Assembly


AirBorn's CV4M2 is a 4 channel, 12.5 Gbps copper verSI cable assembly. CV4M2 cables mate with VTF and VTRAF board-mount connects and VPD panel-mount cables.

Marking Detail






VPD — Vertical Panel-Mount Connector

VPD models are single-ended, thermal interface, panel-mounted cables designed to mate with AV4M2 active optical cables and CV4M2 copper cables. Dust covers come standard with this model cable.

AV4M2 Materials, Finishes, & Cable Performance

Materials & Finishes

	Material	BeCu per ASTM B194
Pin Contacts (Male)	Finish	50µ IN min localized Au per ASTM B 488 Type 11, code C over SOµIN min Ni per ASTM B689 Type I
Molded Insulator	Material Glass-filled liquid crystal polymer (LCP) per ASTM D5138	
Shell	Material	Aluminum alloy 6061-T6 per SAE AMS-4027 or 6061-T6511 per SAE AMS-QQ-A-200/8
Shell	Finish	500µ IN min electroless Ni per SAE AMS-2404, class 3
Hardware	Material	Stainless steel per ASTM A484/A484M, ASTM A582/A582M, or ASTM A320
Haraware	Finish	Passivate per SAE AMS-2700

Cable Performance

Parameter	Symbol	Unit	Min	Typical	Max
Storage Temperature Range	Ts	С	-55		125
Case Operating Temp. Range	Τα	С	-40		90
Operating Relative Humidity (Non-Condensing)		%	0		95
Pressurization		torr	10-9		775
TID Radiation Hardening		krad		30 krad	
See MeVcm2/mg				>40	
Fiber Tension		N			30
Fiber Bend Radius		in	2.5		7
Operating Voltage		Vdd	3.15	3.3	3.45
Data Rate Per Channel		Gbps	1.25		12.5
Power Consumption		W		0.850	1.1
Bit Error Rate		BER			10-12
Return Loss		dB		-8	
Rx Differential Output Voltage		mVp-p	250		900
Outgassing	Max TML of 1% and	d max CVCM of .1%	per MIL-DTL-83513		

VTF Materials, Finishes, & Performance

Materials & Finishes

	Material	BeCu per ASTM B194				
Socket Contacts	Finish Socket End	50μin min localized Au per ASTM B488 Type II, code C, over 50μin min Ni pe ASTM B689 Type I				
GOOKST GOINGGES	Finish Termination End	PIH & PTH: 10µin min localized Au flash per ASTM B488 Type i, code A or C over 50µin min ni per ASTM B689 Type I Press-fit: 50µin min localized Au per ASTM B488 Type II, code C over 50µin min Ni per ASTM B689 Type I				
Molded Insulators	Material	Glass-filled liquid crystal polymer (LCP) per ASTM D5138				
Shell	Material	Aluminum alloy 6061-T6 per SAE AMS-4027 or 6051-t6511 Per SAE AMS- QQ-A-200/8				
	Finish	500µin min electroless Ni per SAE AMS-2404, class 3				
Embedment	Material	Frey Eng. Co. Insulating compound CF3003-80 or equivalent				
Hardware	Material	Stainless steel per ASTM A484/A484m, ASTM A582/A582m, or ASTM A320				
Haraware	Finish	Passivated per SAE AMS-2700				
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Material	Stainless steel per SAE NASM35333 (ASTM A240)				
Washers	Finish	Passivate per NASM35333 (SAE AMS-2700)				
EMI Coding Conduct	Material	Beryllium copper				
EMI Spira Gasket	Finish	Electroplated, 90% tin, 10% lead per AMS-P-81728				

Performance

Contact Rating 2	2 Amperes Max, see AirBorn PTB66 for more info
Operating Temperature	-55°C TO 125°C, see AirBorn PTB66 for more info
Contact Engagement Force	6.0oz max*
Contact Separation Force	0.5oz min*
Connector Mating Force	10oz X (# of contacts) max tested per MIL-DTL-83513
Connector Unmating Force	10oz X (# of contacts) max tested per MIL-DTL-83513
Dwv (Sea Level)	600V, RMS, 60Hz, see AirBorn PTB61 for more info
Recommended Max Operating Voltage	200V, RMS, 60Hz, see AirBorn PTB61 for more info
Insulation Resistance	5,000 MEGAOHMS minimum @ 500 VDC, tested per MIL-DTL-83513
Durability	2,500 connector mating cycles, exceeds MIL-DTL-83513
Sinusoidal Vibration	20g, tested per MIL-DTL-83513
Shock	50g, tested per MIL-DTL-83513
Outgassing	Max TML of 1% and max CVCM of .1% per MIL-DTL-83513

^{*}Max pin size used for contact engagement force and min pin size used for contact separation force.

VTRAF Materials, Finishes, & Performance

Materials & Finishes

Socket Contacts	Material	BeCu per ASTM B194		
	Finish Socket End	50μin min localized Au per ASTM B488 type II, code C, over 50μin min Ni per ASTM B689 Type I		
SOCKOT COMPACTS	Finish Termination End	PIH & PTH: 10µin min localized Au flash per ASTM B488 Type I, code A or C over 50µin min ni per ASTM B689 Type I Press-fit: 50µin min localized Au per ASTM B488 Type II, code C over 50µin min Ni per ASTM B689 Type I		
Molded Insulators	Material	Glass-filled liquid crystal polymer (LCP) per ASTM D5138		
Shell	Material	Aluminum alloy 6061-T6 per SAE AMS-4027 or 6051-t6511 Per SAE AMS- QQ-A-200/8		
	Finish	500µin min electroless Ni per SAE AMS-2404, class 3		
Embedment	Material	Frey Eng. Co. Insulating compound CF3003-80 or equivalent		
	Material	Stainless steel per ASTM A484/A484m, ASTM A582/A582m, or ASTM A320		
Hardware	Finish	Passivated per SAE MAS-2700		
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Material	Stainless steel per SAE NASM35333 (ASTM A240)		
Washers	Finish	Passivate per NASM35333 (SAE AMS-2700)		
5,4,6,	Material	Beryllium copper		
EMI Spira Gasket	Finish	Electroplated, 90% tin, 10% lead per AMS-P-81728		
Thread Insert	Material	NAS1130-02-10		
Thermal Electrical Gasket	Material	Silver-Copper filled silicon, acrylic, electrically conductive, pressure sensitive adhesive (PSA) backing		

Performance

Contact Rating 2	2 Amperes max, see AirBorn PTB66 for more info
Operating Temperature	-55°C to 125°C, see AirBorn PTB66 for more info
Contact Engagement Force	6.0oz max*
Contact Separation Force	0.5oz min*
Connector Mating Force	10oz X (# of contacts) max tested per MIL-DTL-83513
Connector Unmating Force	10oz X (# of contacts) max tested per MIL-DTL-83513
DWV (Sea Level)	600V, RMS, 60Hz, see AirBorn PTB61 for more info
Recommended Maximum Operating Voltage	200V, RMS, 60Hz, see AirBorn PTB61 for more info
Insulation Resistance	5,000 MEGAOHMS minimum @ 500 VDC, tested per MIL-DTL-83513
Durability	10,000 connector mating cycles, exceeds MIL-DTL-83513
Sinusoidal Vibration	20g, tested per MIL-DTL-83513
Shock	50g, tested per MIL-DTL-83513
Outgassing	Max TML of 1% and max CVCM of .1% per MIL-DTL-83513

^{*}Max pin size used for contact engagement force and min pin size used for contact separation force.

CV4M2 Materials, Finishes, & Cable Performance

Materials & Finishes

	Material	BeCu per ASTM B194			
Pin Contacts (Male)	Finish	Phos bronze per ASTM B103, 50µin min localized Au per ASTM B488 Type II, code C over 50µin min Ni per ASTM B689 Type I			
Molded Insulator	Material	Material Glass-filled liquid crystal polymer (LCP) per ASTM D5138			
Shell	Material	Aluminum alloy 6061-T6 per SAE AMS-4027 or 6051-T6511 Per SAE AMS- QQ-A-200/8			
	Finish	500µin min electroless Ni per SAE AMS-2404, class 3			
11	Material	Stainless steel per ASTM A484/A484M, ASTM A582/A582M, or ASTM A320			
Hardware	Finish	Passivated per SAE AMS-2700			
C · C 1	Material	BeCu			
Spira Gasket	Finish	inish Electroplated, 90% tin, 10% lead per AMS-P-81728			
Cable: 26 AWG Twinax	Parallel, 100 c	Parallel, 100 ohm impedance			
Cable: 26 AWG Buss Wire	Electroplated	Electroplated, 90% tin, 10% lead per AMS-P-81728			
Heatshrink Tubing		AA59551-H26S1B per A-A-59551, plating: eclectrodeposited tin alloy coating per ASTM B545, class C. 90 \pm 5% tin, remainder lead			
Lacing (Braid Option Only)	Per A-A-5208	1			
Таре	Acrylic adhea	sive polymide film (Kaption)			
Metal Braid Only (Option 2)	Silver-plated compound sho	Silver-plated copper braid per aa59569r30soxxx. Secured to backshell with micro band. Potting compound shall be frey engineering CF-3003-80 (fullpot) and L-II-49 (prepot) or equivalent.			
Halar Braid (Option 3)	Halar braid secured to backshell with micro band. Potting compound shall be frey engineering CF-3003-80 (fullpot) and L-II-49 (prepot) or equivalent.				
Halar Over Metal Braid (Option 4)	Halar over silver-plated copper braid per AA59569R30SOXXX secured to backshell with micro band. Potting compound shall be frey engineering CF-3003-80 (fullpot) and L-II-49 (prepot) or equivalent.				

Performance

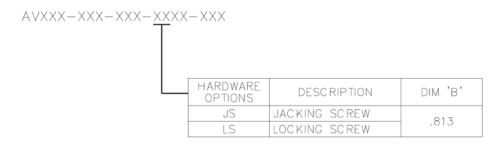
Contact Rating	2 Amperes max, see AirBorn PTB66 for more info
Operating Temperature	-55°C to 125°C, see AirBorn PTB66 for more info
Contact Engagement Force	6.0oz max*
Contact Separation Force	5.0oz min*
Connector Mating Force	10oz X (# of contacts) max tested per MIL-DTL-83513
Connector Unmating Force	10oz X (# of contacts) max tested per MIL-DTL-83513
DWV (Sea Level)	600V, RMS, 60Hz, see AirBorn PTB61 for more info
Recommended Max. Operating Voltage	200V, RMS, 60Hz, see AirBorn PTB61 for more info
Insulation Resistance	5,000 MEGAOHMS minimum @ 500 VDC, tested per MIL-DTL-83513
Durability	2,500 connector mating cycles, exceeds MIL-DTL-83513
Sinusoidal Vibration	20g, tested per MIL-DTL-83513
Shock	50g, tested per MIL-DTL-83513
Outgassing	Max TML of 1% and max CVCM of .1% per MIL-DTL-83513

^{*}Max pin size used for contact engagement force and min pin size used for contact separation force.

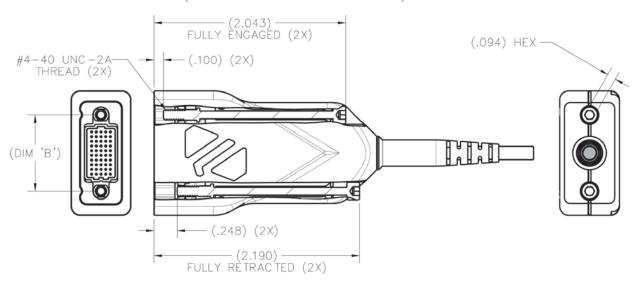
VPD Materials, Finishes, & Performance

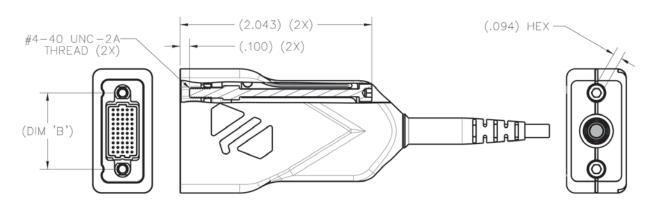
Materials & Finishes

Shell	Material	6061-T6, 6061-T651, or 6061-T6511 aluminum SAE AMS 4027 or SAE AMS-QQ-A-200/8				
	Finish	500µin min electroless Ni per SAE AMS-2404, class 3				
	Socket Material	BeCu per ASTM B194				
Contacts	Finish	50µin min localized gold finish per ASTM B488, over 50µin min Ni per ASTM B689 Type I				
Cable	Finish	26 AWG, 100 OHM twinax cable				
Wire	Material	24 AWG, M22759/33-24, black				
Molded Insulator Finish		Glass-filled liquid crystal polymer (LCP) per ASTM D5138				
	Material	Stainless steel per ASTM A582/A582M or ASTM A320				
Hardware	Finish	Passivate per SAE MAS-2700				
Embedment	Material	Frey Eng. Co. Insulating compound CF3003-80 and L-II-49 or equivalent				
Solder	older Material SN/PB solder, 63% PB, 37% SN					
DOD	Material	ISOLA 185HR PCB laminate				
PCB	Finish	Electroless nickel immersion gold per IPS-6012/DS				
S	Material	Beryllium copper				
Spira Gasket	Finish	Electroplated, 90% tin, 10% lead per AMS-P-81728				
Thermal Electrical Gasket	Material	Silver-Copper filled silicon, acrylic, electrically conductive, pressure sensitive adhesive (PSA) backing				


Performance

Contact Rating	2 Amperes max, see AirBorn PTB66 for more info
Operating Temperature	-55°C to 125°C, see AirBorn PTB66 for more info
Contact Engagement Force	6.0oz max*
Contact Separation Force	0.5oz min*
Connector Mating Force	10oz X (# of contacts) max tested per MIL-DTL-83513
Connector Unmating Force	10oz X (# of contacts) max tested per MIL-DTL-83513
DWV (Sea Level)	600V, RMS, 60Hz, see AirBorn PTB61 for more info
Recommended Maximum Operating Voltage	200V, RMS, 60Hz, see AirBorn PTB61 for more info
Insulation Resistance	5,000 MEGAOHMS minimum @ 500 VDC, tested per MIL-DTL-83513
Durability	10,000 connector mating cycles, exceeds MIL-DTL-83513
Sinusoidal Vibration	20g, tested per MIL-DTL-83513
Shock	50g, tested per MIL-DTL-83513
Outgassing	Max TML of 1% and max CVCM of .1% per MIL-DTL-83513

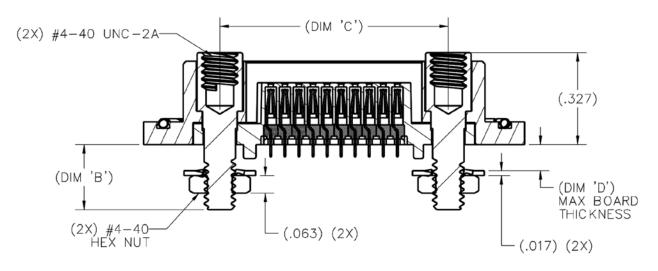

^{*}Max pin size used for contact engagement force and min pin size used for contact separation force.

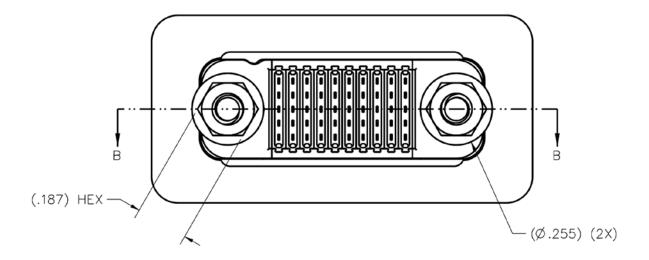

LOCKING SCREW DIMENSIONS (HARDWARE OPTION LS)

NOTE: TORQUE ALL HARDWARE OPTIONS TO 4.0 - 4.5 IN/LBS.

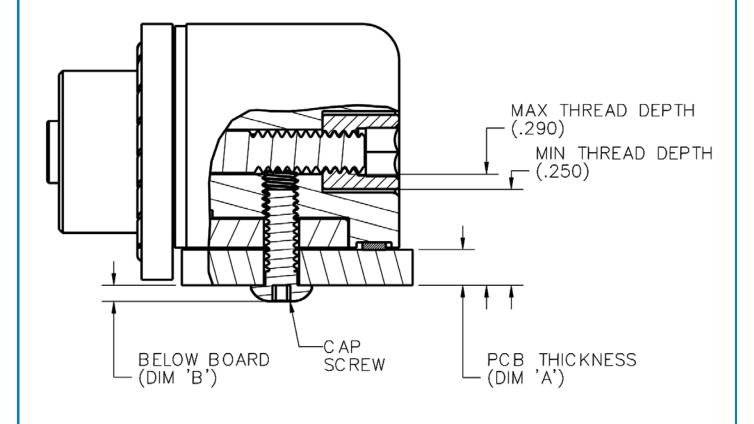
TURNING JACK SCREW DIMENSIONS (HARDWARE OPTION JS)

NOTE: TURN JACKING HARDWARE 1/2 REVOLUTION, ALTERNATELY PER SIDE UNTIL FULLY SEATED.

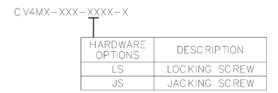


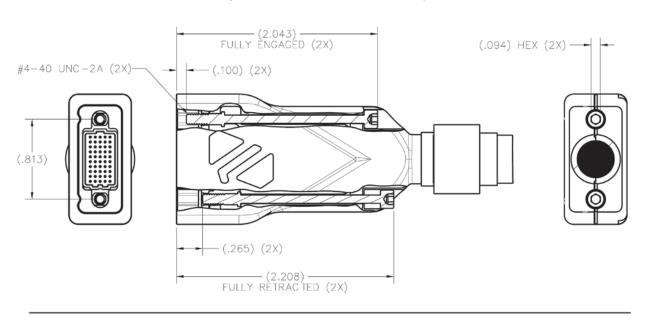

VTF Hardware Options

FIXED JACKNUT (HARDWARE OPTION N)


SECTION B-B

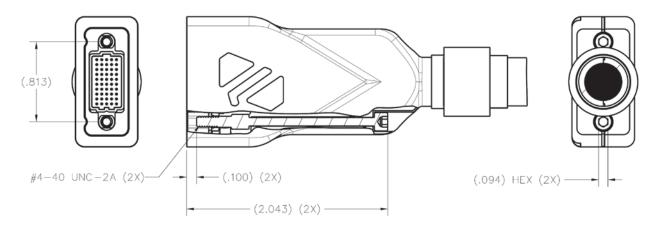
VTRAF Recommended Hardware (Mounting Hardware Not Included)


PCB THICKNESS (DIM 'A')	BELOW BOARD (DIM 'B')	BUTTON HEAD CAP SCREW
.062	.046	#2-56 X 3/16"
.094	.046	#2-56 X 1/4"

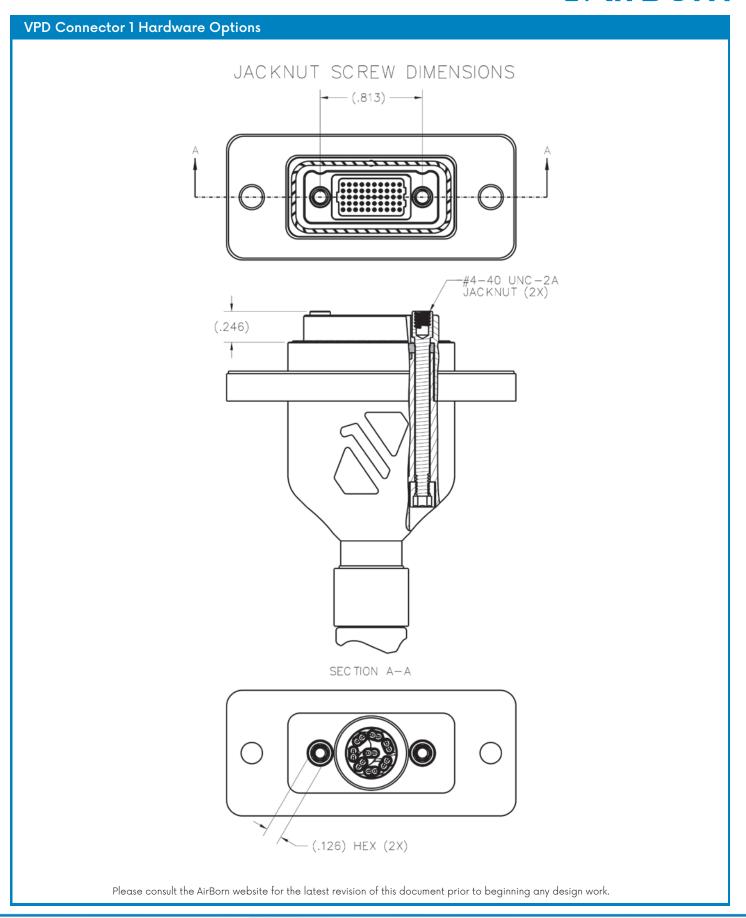


CV4M2 Hardware Options

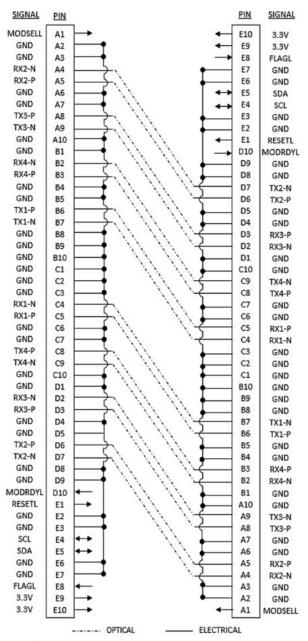
NOTE: TORQUE ALL HARDWARE OPTIONS TO 4.0 - 4.5 IN/LBS



LOCKING SCREW DIMENSIONS (HARDWARE OPTION LS)



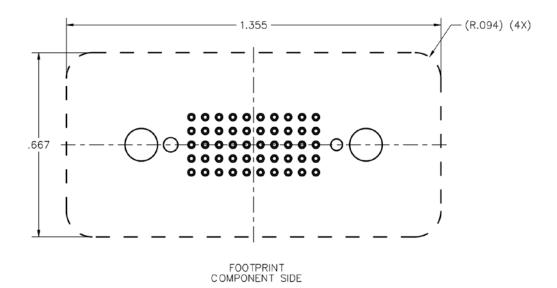
TURNING JACK SCREW DIMENSIONS (HARDWARE OPTION JS)

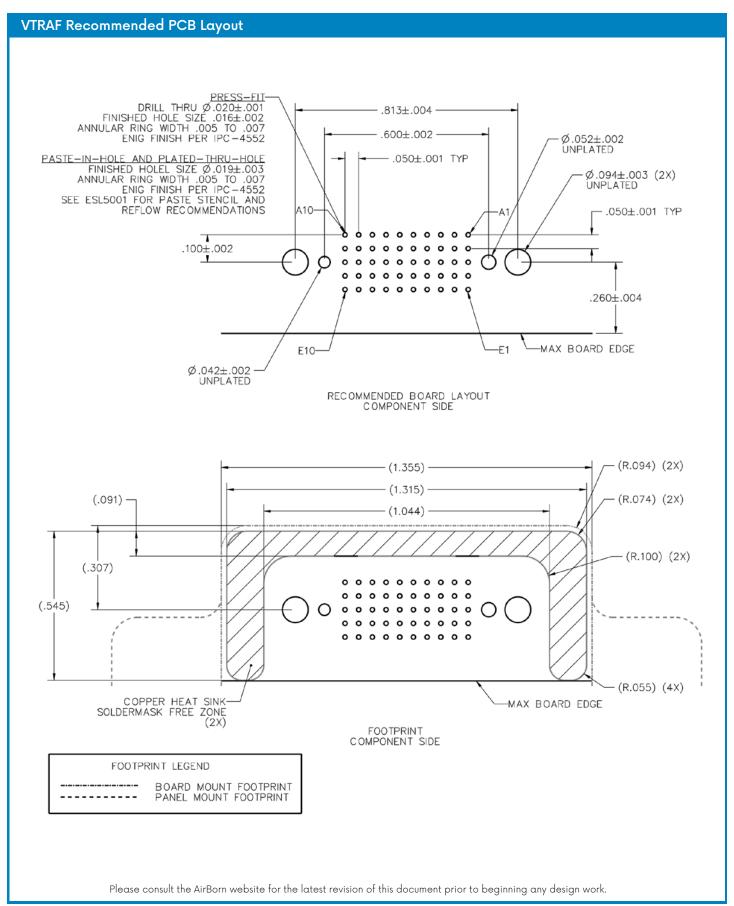

NOTE: TURN JACKING HARDWARE 1/2 REVOLUTION, ALTERNATELY PER SIDE UNTIL FULLY SEATED.

AV4M2 Wire Connect Chart & Pin Out

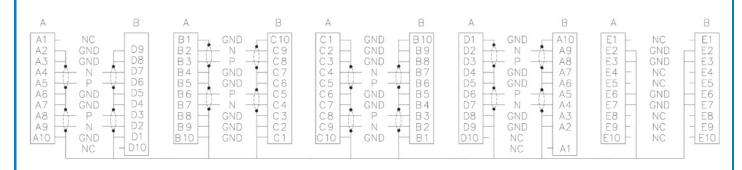


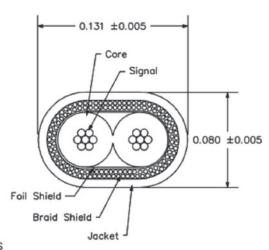
NOTE: PIN OUT REMAINS THE SAME FOR BOTH CABLE ENDS.


				verSI Plug	g Pin-Out				
A1	A2	A3	A4	A5	A6	A7	A8	A9	A10
MODSELL	GND	GND	RX2-N	RX2-P	GND	GND	ТХЗ-Р	TX3-N	GND
B1	B2	В3	B4	B5	В6	B7	B8	B9	B10
GND	RX4-N	RX4-P	GND	GND	TX1-P	TX1-N	GND	GND	GND
C1	C2	C3	C4	C5	C6	C7	C8	C9	C10
GND	GND	GND	RX1-N	RX1-P	GND	GND	TX4-P	TX4-N	GND
D1	D2	D3	D4	D5	D6	D7	D8	D9	D10
GND	RX3-N	RX3-P	GND	GND	TX2-P	TX2-N	GND	GND	MODRDYL
E1	E2	E3	E4	E5	E6	E7	E8	E9	E10
RESETL	GND	GND	SCL	SDA	GND	GND	FLAGL	3.3V	3.3V


VTF Recommended PCB Layout

RECOMMENDED BOARD LAYOUT COMPONENT SIDE





CV4MX Wire Chart

NOTES

Signal Conductor: 26 AWG, 7/34 SPC per ASTM B298
DC Resistance: 39.1 ohms/1000ft max @ 20C

Core: FEP, 1.4mm (0.055") OD

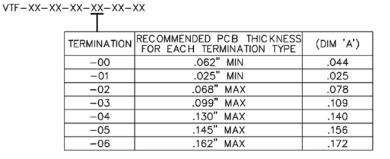
Color: One Blue, One Green

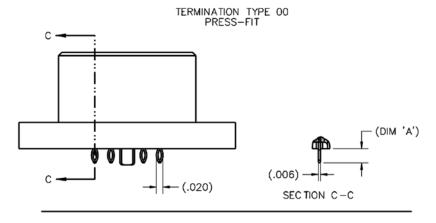
Braid Shield: 42 AWG SPC per ASTM B298, >85% Coverage DC Resistance: 16.8 ohms/1000ft typical

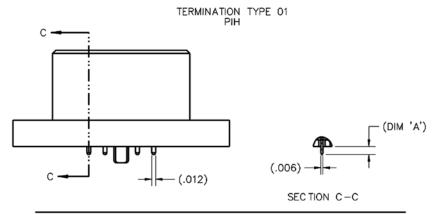
Jacket: FEP, 0.005" Wall Thickness

Color: Gray Impedance: 100 ±10 ohms

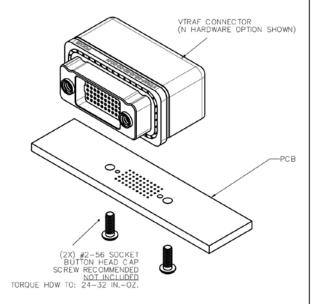
Capacitance: 47.6 pF/m (14.5 pF/ft) Ref Inductance: 0.47 μ H/M (0.145 μ H/ft) Ref. Propagation Delay: 4.76 ms/m (1.45 ns/ft) Ref.


Skew: < 82 ps/5m Temperature Rating: -55C to 200C Voltage Rating: 300V


Min. Bend Radius: 13 mm (0.5")

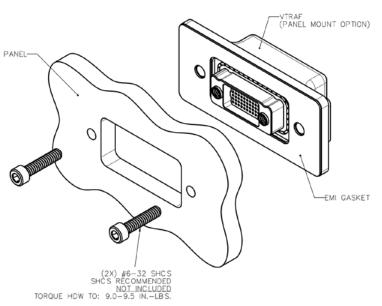

Packaging: 12" Plastic Spool Footage per Spool: Up To 2500ft Minimum Length: 10ft

VTF Termination Dimensions

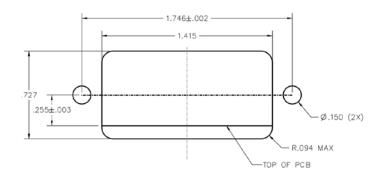


VTRAF Termination Dimensions $\mathsf{VTRAF} - \mathsf{XX} - \mathsf{XX} - \mathsf{XX} - \mathsf{XX} - \mathsf{XX} - \mathsf{XX}$ TERMINATION RECOMMENDED PCB THICKNESS FOR EACH TERMINATION TYPE DIM 'A' .062" MIN -00 .044 .025" MIN -01 .025 -02 .068" MAX .078 .099" MAX .130" MAX .145" MAX -03 .109 -04.140 -05.156 .162" MAX -06 .172 TERMINATION TYPE 00 PRESS-FIT SECTION C-C (DIM 'A') 00000 (.006)(.020)TERMINATION TYPE 01 SECTION C-C - (DIM 'A') - (.012) (.006) TERMINATION TYPE 02 TO 06 PTH SECTION C-C (DIM 'A') **-** (.006) - (.012) Please consult the AirBorn website for the latest revision of this document prior to beginning any design work.

VTRAF Mounting Instructions


PCB MOUNTING INSTRUCTIONS

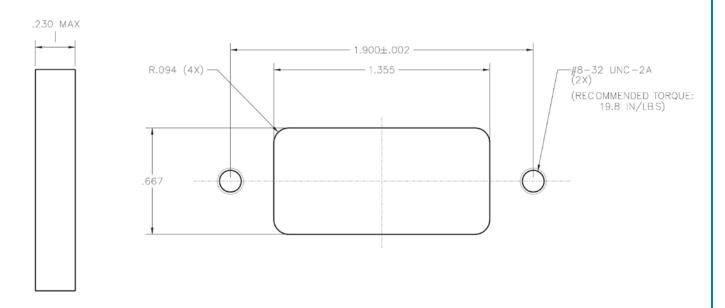
BOARD MOUNT AND PANEL MOUNT OPTIONS (VRRAF-05-10-50-00-00-N SHOWN) SHELLS AND HARDWARE COME INSTALLED



PANEL MOUNTING INSTRUCTIONS

PANEL MOUNT OPTION ONLY (VRRAF-05-10-50-00-00-NE SHOWN) SHELLS AND HARDWARE COME INSTALLED

RECOMMENDED PANEL CUTOUT

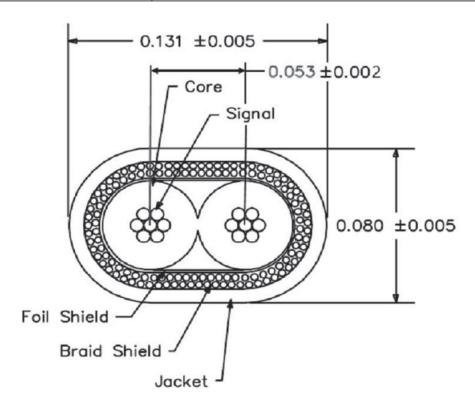

VPD Pinout & Connector 1 Panel Cutout

CONNECTOR 1 PIN-OUT									
A10	A9	A8	A7	A6	A5	A4	A3	A2	A1
GND	TX3-N	TX3-P	GND	GND	RX2-P	RX2-N	GND	GND	MODSELL
B10	B 9	B8	B7	B6	B5	B4	B3	B2	B1
GND	GND	GND	TX1-N	TX1-P	GND	GND	RX4-P	RX4-N	GND
C10	C9	C8	C7	C 6	C5	C4	C3	C 2	C1
GND	TX4-N	TX4-P	GND	GND	RX1-P	RX1-N	GND	GND	GND
D10	D9	D8	D7	D6	D5	D4	D3	D2	D1
MODRDYL	GND	GND	TX2-N	TX2-P	GND	GND	RX3-P	RX3-N	GND
E10	E9	E8	E7	E6	E5	E4	E3	E2	E1
3.3V	3.3V	FLAGL	GND	GND	SDA	SCL	GND	GND	RESETL

- * ALL GNDS & TWINAX SHIELDS COMMON. ** POSITIONS A1, D8, D9, D10, E1, E3, E4, E5, E6, E8-E10 POPULATED WITH
- 24 AWG WIRE.

 *** FOUR DISCRETE (A1, D10, E8, E1) AND FOUR TWISTED PAIR (D9/E10 D8/E9, E5/E6, E3/E4).

RECOMMENDED CONNECTOR 1 (C1) PANEL CUTOUT



Please consult the AirBorn website for the latest revision of this document prior to beginning any design work.

VPD Twinax Properties

DESCRIPTION						
PARALLEL PAIR TWINAX CABLE						
C ONSTRUCTION						
SIGNAL	26 AWG, 7/34 SPC. PER ASTM B298					
CORE	FEP (ONE BLUE, ONE GREEN)					
BRAID SHIELD	42 AWG SPC PER ASTM B298 SILVER PLATED COPPER, >85% COVERAGE					
JACKET	FEP (GRAY)					
PROPERTIES						
OPERATING TEMPERATURE	-55°C TO +200°C					
DIFFERENTIAL IMPEDENCE	100±10 OHMS					
MIN. BEND RADIUS	0.50"					

Please consult the AirBorn website for the latest revision of this document prior to beginning any design work.

CDGV01649 Evaluation Kit

Order Your Evaluation Kit Today!

Want to try our SAOC or RAOC out in your own lab and in your unique product design? Order a kit today and run the product through its paces and you'll discover AirBorn quality and design ingenuity in your own time.

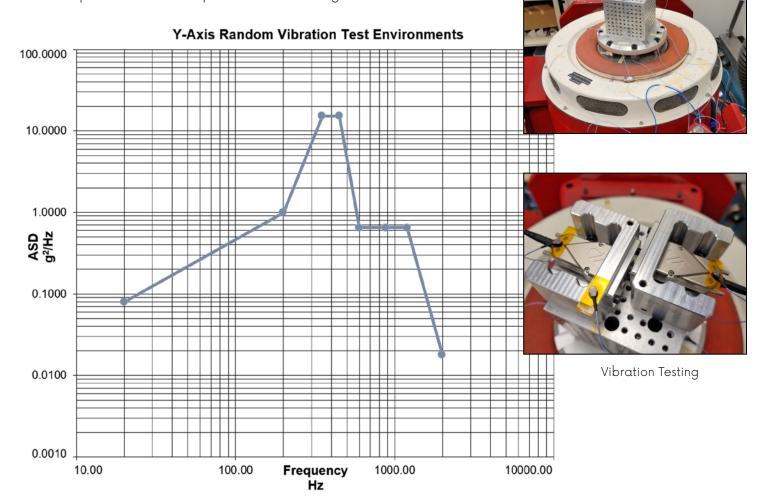
Please consult the AirBorn website for the latest revision of this document prior to beginning any design work.

Space-Rated Active Optical Cable Qualifications Review

Qualification Testing

The cables in Qualification testing go through the following verification testing. Each cable is fully functional throughout all tests, with bit error monitoring, as well as power, and telemetry checks throughout. Passing criteria for each test includes: BER better than 1x10-12. Telemetry interface responds without error. No changes in current draw greater than 5% from baseline. No signs of physical damage.

Thermal Life Testing


134 thermal cycles of $+95^{\circ}$ C to -34° C, 1 hour dwells on all plateaus, ramp rate $\leq 6^{\circ}$ C.

Thermal Vacuum Testing

24 thermal cycles of +95°C to -34°C, 6 hour dwells on all hot plateaus, 1 hour dwells on all cold dwells, ramp rate \leq 6°C, chamber pressure of 1x10-4 torr.

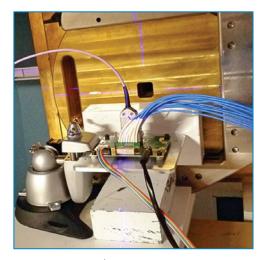
Vibration Testing

Vibration testing is meant to simulate the environment the cable would experience as it is rocketed into orbit. 60.26 Grms total, 3 minutes per axis. Vibration profile and test images shown below.

Pyroshock

Pyroshock testing is meant to simulate the high-magnitude shock waves propagated through a structure during an explosive event, such as when an explosive charge is used to separate a multistage rocket. Each cable undergoes the following pyroshock profile, applied three times in each direction of each orthogonal axis. The cables are not powered for this test.

Pyroshock SRS G's vs. Frequency



Additional Verification Testing

The following tests are performed outside of the official Qualification test plan, and verify that additional design criteria have been met.

Radiation Testing

Radiation testing has been performed on all AirBorn Active Optical Cable designs. A high flux, continuous 200MeV proton beam was focused on the cable end, while power, telemetry and bit error rate were measured and recorded for all four channels. No latchup events nor permanent degradation in functionality were observed, with a total ionizing dose of over 95 kRad (TID Si) delivered to the optical engine components. Test setup shown below.

Radiation Testing

EMC Testing

EMC testing per MIL-STD-461F has been performed on all legacy AirBorn Active Optical Cable designs. The test results indicate that the cable's external interfaces and enclosures successfully contained all EMC emissions. EMC testing will be performed on all future cable configurations. The same robust design features which made the legacy product so effective at mitigating EMC emissions are incorporated into each new product configuration.

Cable Pullout Testing

The FOCuS cables have been tested and verified to meet a 10lbf axial pull force on the cable jacket without separation from the cable end body. Test setup shown below.

VCSEL and Photodiode Extended Life Testing

Each unique VCSEL and Photodiode lot used in FOCuS production assemblies undergo extended life testing before they are approved for use. Three subgroups of 30 pieces each run

through spectrum analysis, LIV curve testing, burn in, and a life test of up to 2,500hrs at 150°C. This testing

provides confidence that our products will withstand extreme operating conditions over their lifespan.

Element Evaluation Testing

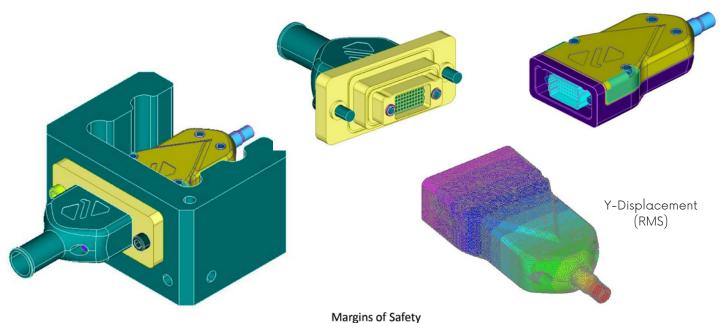
All microcircuit and semiconductor die lots used in the FOCuS product are tested per MIL-PRF-38534J, Appendix C, Table C-II, before being used in production assemblies. The testing is tailored to our exact usage case. Testing includes the following:

Cable Pull Testing

MIL-PRF-38534J APPENDIX C

TABLE C-II. Microcircuit and semiconductor dice evaluation requirements

Subgroup			Test	MIL-	-STD-883	Quantity	Reference
	K	Н		Method	Condition	(accept number)	paragraph
1	Х	Х	Element electrical			100 percent	C.3.3.1
2	Х	Х	Element visual	2010 1/ 2069 1/ 2070 1/ 2072 1/ 2073		100 percent	C.3.3.2
3	X	X	Internal visual	2010 1/ 2069 1/ 2070 1/ 2072 1/ 2073		10 (0)	C.3.3.3 C.3.3.4.2
4	Х		Temperature cycling	1010	С	2/ 10 (0)	C.3.3.3
	Х		Mechanical shock or Constant acceleration	2002	B, Y1 direction 3,000 g's, Y1 direction		
	Х		Interim electrical				C.3.3.4.3
	X		Burn-in	1015	240 hours minimum at +125°C		
	Х		Post burn-in electrical				C.3.3.4.3
	X		Steady-state life	1005			
	Х	Х	Final electrical				C.3.3.4.3
5	Х	Х	Wire bond evaluation	2011		10 (0) wires or 20 (1) wires	C.3.3.3 C.3.3.5
6	Х		SEM	2018 <u>1</u> / 2077		See method 2018 of MIL-STD-883 or method 2077 of MIL-STD-750	C.3.3.6



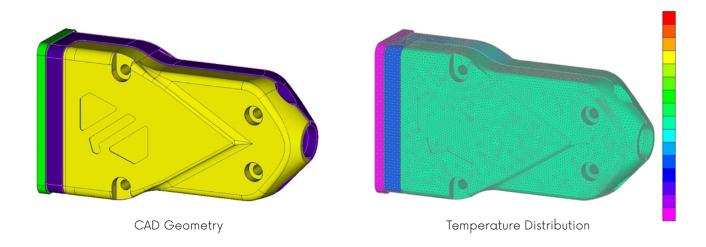
Design Analysis

Several design analyses were performed on the FOCuS 4X verSI cable throughout the design process, in order to provide insight for how to optimize the design. These optimizations greatly improve the ability of the cable to successfully pass Qualification testing and perform in the field.

FEA Modal and Stress Analysis

A finite-element analysis using Nastran has been performed on the cable and mating interface to determine natural frequencies and Von Mises stress levels developed during Vibration testing. Positive margins of safety are maintained throughout this test, both in Yield and Ultimate Strength, for all mechanical components. Additionally, fastener torque levels have been analyzed to assure preload is maintained. When paired with vibration testing, this analysis provides a high confidence level that the cable can withstand extreme vibration environments. An excerpt from the report can be seen below, as well as images of the FEA model.

Part Yield Strength (ksi) Ultimate Strength (ksi) MOS-v MOS-u Von Mises Stress (3σ) ksi FS - 1.0 FS - 1.4PWB - Cu 1.8 4.83 30.5 1.68 > 5 0.3 N/A PWB - FR4 45.0 N/A > 5 Flex Circuit - Polyimide 1.8 N/A 50.0 N/A > 5 Flex Circuit - Cu 0.3 4.83 30.5 > 5 > 5 Cover 8.8 40.0 45.0 3.56 2.62 Backshell 12.9 40.0 45.0 2.09 1.46 Jackscrew 75.0 125.0 2.14 2.70 24.4 75.0 125.0 Jacknut 2.07 2.62 Fixture - Connector 7.7 40.0 45.0 4.20 3.13 Fixture - Backshell 5.6 40.0 45.0 > 5 4.69 Fixture - Block 1.5 40.0 45.0 > 5 > 5



Structural and Thermal Fatigue Analysis

A structural and thermal fatigue analysis has been performed on all legacy AirBorn Active Optical Cable designs, to ensure structural integrity throughout the mission. The structural fatigue analysis accounted for damage due to vibration as well as thermal cycling.

Heat Transfer Analysis

The FOCuS PCBA has been optimized to enhance thermal transfer from high-power-consuming-die onboard, into the host assembly, thereby minimizing the temperature rise of these die. A complete finite element model of the PCBA and thermal path has been generated, to predict maximum case and junction temperatures for all onboard die. In conjunction with thermal vacuum testing, this analysis provides high confidence that the cable will continue to perform within our stated operating temperature range.

Venting Analysis

A venting analysis has been performed of the cable backshell and all inner semi-enclosed cavities, to ensure the pressure change due to rapid ascent or descent through Earth's atmosphere does not cause structural damage. The analysis follows the approach of NASA Memorandum 85016 to determine pressure differentials, and utilizes structural FEA analysis to show margins of safety.

$$\Delta P = \frac{1}{2RTPe} \left(\frac{\dot{VPe}}{ACD} \right)^2$$

Parts & Materials list and Outgassing

A complete parts and materials list has been generated to identify every unique material utilized within the cable assembly, with the exception of board-mounted electronics. All non-metallic materials have been outgas tested per ASTM-E-595.

Failure Mode, Effects and Criticality Analysis

A Failure Mode, Effects and Criticality Analysis (FMECA) has been performed on all legacy AirBorn Active Optical Cable designs to identify and eliminate single point failures, in an effort to reduce the possibility of mission failure.

Reliability Analysis

A Reliability Analysis has been performed on all legacy AirBorn Active Optical Cable designs to calculate the predicted probability of success for a mission. This analysis accounts for all components in the data transfer path, from one end of the cable to the other.

Worst Case Analysis

A Worst Case Analysis has been performed on all legacy AirBorn Active Optical Cable designs. This analysis provides a method for analytically verifying circuit performance and derating requirements have been met over a program specified environment and design life. It is an effective tool in validating electrical circuit design stress and estimated performance margins, to a customer's specific operating environment.

The AirBorn Advantage

Rugged Power Systems

Photonics/ Optoelectronics

AOCC-4.21

p. 512.863.5585 www.airborn.com